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Abstract

Formation time of �nal state particles in hadronic collisions is studied in a
very simple model which contains the formation time as a free parameter to be
determined by comparison of calculated Bose-Einstein correlation functions
with the available data. Final state pions are either products of resonance
decays or are "directly" produced. The "direct" production is simulated by
an immediate decay of a resonance. For "direct pions" forming about a half of
�nal state pions and for formation times of resonances within the interval 0.2-
0.4 fm/c we get density of sources which leads to Bose-Einstein correlations
of two identical pions consistent with recent data. The formation time of
0.2 to 0.4 fm/c is shorter then expected and it may have consequences for
construction of models of proton-nucleus and nucleus-nucleus interactions.
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1 Introduction

Details of dynamics of hadronic collisions in the region of a few hundred GeV are
not yet completely understood, since a large part of the process can not be described
by Perturbative Quantum Chromodynamics (PQCD). One of the most important
parameters characterizing the process is the formation time of secondary hadrons.
It has been introduced in di�erent formulations and studied in the context of dif-
ferent dynamical models [1-15]. The formation time is of particular importance in
studies of proton - nucleus (pA) and nucleus - nucleus (AB) collisions since it im-
poses constraints on the evolution of cascades and in this way it directly in
uences
energy densities which can be reached in heavy - ion collisions [15]. The main ob-
servation made in the present paper is based on the fact that the formation time -
in a way which is unfortunately not completely model independent - can be determ-
ined from Bose - Einstein correlations of identical particles in pp or �p collisions.
For larger formation times the system expands longer prior to emitting �nal state
stable and unstable hadrons and due to a longer expansion, identical pions with
close momenta are emitted from larger relative distances. In our model of hadronic
production the formation time enters as a free parameter which can be determined
from the correlation function C(k1; k2) for two identical pions with four - momenta
k1; k2. The purpose of the present paper is to determine the formation time �f in a
simple model of production of secondary particles in hadronic collisions. We have to
treat inevitably the question of the in
uence of resonance decays on the correlation
function and we have to make use of the data on the Bose - Einstein correlations
of identical pions. We shall use recent data of EHS/NA-22 collaboration [16]. The
paper is organized as follows: In the next Section we shall present our simple model
of multiparticle production and we shall analyze the role of resonance production
on Bose - Einstein correlations of identical pions. In Sect.3 we shall compute cor-
relation function of identical pions,compare it with available data and estimate the
formation time of hadrons. Sect.4 contains discussion on the in
uence of the value of
formation on the evolution of pA and AB interactions. Comments and conclusions
are presented in Sect.5.

2 A simple model of Bose - Einstein correlations

of identical pions in hadronic collisions

In HBT studies of interferometry of identical particles the correlation function
C2(k1; k2) is expressed as a square of Fourier Transform (FT) of the density of
sources

C2(q;K) � C2(k1; k2) = j
Z
�(x;K)eiq:xd4xj

2

(1)

where four-vectors q;K are de�ned as

q = k1 � k2; K =
k1 + k2

2
(2)

and the density of sources (the Wigner distribution) is normalized to 1 byZ
�(x;K)d4x = 1 (3)
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We shall study C2(~q;K) as function of the longitudinal momentum qz � q only. For
that purpose we put into Eq.(1) ~qT = 0; q0 = 0 and get

C2(q) = j
Z
�(z;K)eiqzdzj

2

(4)

where �(z;K) is �(z; t;K) integrated over time. Our density distribution is inde-
pendent of x,y since in our model resonances move only along the z-axis and therefore
they decay with x = y = 0.

In hadronic collisions about a half of �nal state pions appear as products of
resonance decays. A resonance has a formation time �f and a mean life-time �d in
its rest frame and both these times are Lorentz dilated. Depending on its rapidity,
resonance travels some distance before decaying. Two identical pions originated by
decays of two di�erent resonances may have close momenta and be produced from
two distant sources. This leads via Bose- Einstein interferometry to an increase of
C2(q;K) for small values of q. We shall show that a superposition of resonances and
of directly produced pions gives the two body correlation function C2(q), which is
consistent with data.

The model we are studying is admittedly oversimpli�ed, the most drastic as-
sumption consists in putting transverse momenta of resonances equal to zero.These
simpli�cations permit us to do most of calculations by hand and keep the discussion
as transparent as possible. In our opinion such an approach permits to get an insight
into the problem and in this aspect it is complementary to less transparent Monte
Carlo computations.

A large amount of models of hadronization in e+e�, ep and hadron- hadron
collisions has been proposed, some of them can be traced back from Refs. [18-
21]. In most of these models an intermediate partonic stage is followed by cluster
formation and decay. It is not clear whether there are some intermediate "heavy
clusters" which decay after some time to known hadronic resonances. Since we wish
to have the model as simple as possible we shall not discuss such intermediate stages
and we shall only assume that well known hadronic resonances are formed after a
common formation time �f and after being formed they decay according to schemes
known from experiment. The value of the formation time �f will be considered
as a free parameter. Studies of resonance production in pp collisions have shown
that about a half of �nal state pions comes from decays of well known hadronic
resonances, although there exist also estimates that this fraction is larger. Final
state pions which cannot be ascribed to decays of known resonances are referred
to as being "directly" produced. It is possible that a part of these pions is due to
decays of rather broad resonances. In our simpli�ed model we describe "directly"
produced pions as decay products of a resonance with vanishing life-time. Direct
pions are thus produced rather early and not far from the point of the hadronic
collision. The in
uence of resonance production on spectra of their decay products
has been studied in detail [22] and literature on the e�ects of resonance decays on
HBT interferometry can be traced back from Ref.[23].

We shall present here a very simpli�ed and transparent model. In this model we
assume that in a hadronic collision:

i) Resonances are formed in a time �f after the collision. The value of �f is a
free parameter of our model.
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ii) After being formed a resonance decays with the mean life-time �d, taken from
experiment.Both �f and �d are Lorentz dilated by 
 = (1 � v2)�1=2 where v is the
velocity of the resonance.

iii) Transverse momentum of resonances vanishes, their velocities have only com-
ponents along the axis of collision (z-axis). This assumption makes the model some-
what unrealistic, but simpli�es calculations and makes the model rather transparent.

iv) A part of pions is produced "directly". The direct production is described as
a decay of a resonance with a vanishing mean life-time.

v) We shall work in the cms of hadronic collision and consider only simple kin-

ematical situations in which the momentum ~K = (~k1 + ~k2)=2 is small and perpen-

dicular to the axis of the collision (z-axis) and the momentum ~q = ~k1�~k2 is parallel
to the z-axis. This corresponds to yc:m: � 0 and KT small.

We shall now study the behaviour of the correlation function C2(q;K) of two
identical pions caused by resonance decays. The two interfering amplitudes are
shown in Fig.1. We assume that the two pions have - in the simple situation con-
sidered - the same energy, therefore q0 = k10 � k20 = 0. We shall start with calcu-
lating function �(z;K) for a particular resonance, then we shall sum over resonance
contributions and take the Fourier Transform as shown in Eq.(1).

Width � of a resonance of mass M, decaying to two particles of mass m is given
in the resonance rest frame as

� =
Z
jT j2 d3p1

(2�)32E1

d3p2
(2�)32E2

�(~p1 + ~p2)�(M � E1 � E2) (5)

where the standard and self-explanatory notation has been used. Making use of
E1 = E2 = mT ch(y) we can rewrite Eq.(4) for the decay to two equal mass particles
as

� =
Z
jT j2 d�pTdpTdy

(2�)62M
q
M2 � 4m2

T

[�(y � y1) + �(y � y2)] (6)

where m2
T = m2 + k2T and

y1;2 = ln
�
(M=2mT )�

q
(M=2mT )2 � 1

�
; y1 = �y2 (7)

Boosting the resonance to rapidity yR and normalizing the decay probability to 1,
with jT j2 held constant we get

dP

pTdpTd�dy
=

1

�

1q
M2 � 4m2

T

[�(y � yR � y1) + �(y � yR + y1)] (8)

This probability distribution is normalized as

Z dP

pTdpTd�dy
pTdpTd�dy = 1 (9)

Note that in order to keep the calculations simple we are using here and in what
follows a "zero width approximation" for distribution of resonance masses.

Eqs.(6) and (7) show that resonance products are shifted in rapidity by �y = �y1
with respect to the rapidity of the resonance. The value of this shift may be rather
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large. For instance for decay of the �- meson to two pions with pT � 0 we get
�y � y1 � 1:5. A pion with y � 0 and pT � 0 is thus produced by a � with
yR � �1:5. Such a � moves with velocity v � tanh(y1) in the rest frame of the
pion.Note that for larger values of pT of the pion the rapidity di�erence between
the pion and the � becomes smaller and for p2T +m2 = m2

�=4 the rapidity di�erence
vanishes.

A � with rapidity y1 needs some time for its formation and some time for its
decay. Pion with y � 0 and pT � 0 is thus emitted some distance away from the
origin. Two identical pions, both with small y and pT and originated in decays of
two di�erent �'s come thus from two distant sources as shown in Fig.1.

For resonance decays to two unequal mass particles M ! m1+m2 Eqs. (5) -(8)
are somewhat modi�ed.Calculation is straightforward, the �nal result being

dP

d�pTdpTdy
=

1

4�
q
k2 � p2T

[�(y � yR + y1) + �(y � yR � y1)] (10)

where

k � (pT )max =
1

2M
[M2 � (m1 +m2)

2]1=2[M2 � (m1 �m2)
2]1=2 (11)

and

y1 = ln(� +
p
�2 � 1); � =

M2 � (m2
2 �m2

1)

2m1M
(12)

This equation is valid for vanishing transverse momenta of decay products. For
pT 6= 0 masses m1 and m2 in Eq.(12) should be replaced by the corresponding
transverse masses.

Expressing the four-vector K in Eq.(2) in terms of y; pT ; � the density of points
in which pions are produced �(z; t;K) can be written as follows

�(z; t; y; pT ; �) =
X

R

Z
P (z; t; yR):

dnR
dyR

:
dP

pTdpTd�dy
dyR (13)

Here dnR=dyR is the rapidity density of the resonance R, dP=pTdpTd�dy is given
by Eq.(10) and P (z; t; yR) is the probability density that resonance R with rapidity
yR decays in the space-time point (z; t). Since we have assumed that resonances
move along the z-axis, coordinates x,y of the position of resonance decay vanish.
It follows from Eq.(13) that the correlation C2(q;K) is essentially given by the
probability distribution P (z; t; yR). For the case of y = 0 which we consider here,
the function P (z; t; yR) is symmetric with respect to z ! �z and we shall calculate
it only for z � 0. In this case out of two �-functions in Eq.(8) only the one with
yR = y1 contributes.

The function P (z; t; yR) is given by the space-time features of formation and
decay of resonance R. There are many models of formation of �nal state hadrons
in hadronic collisions. To keep our model as simple as possible we shall select a
particularly simple version. We assume that a resonance is formed in its rest frame
in time �f and in this frame the probability of resonance being already formed at
time � is

Pf(�) = 1� exp(��=�f ) (14)
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In the frame in which resonance R has rapidity yR its velocity is v(yR) = tanh(yR),
the formation time is dilated to t = cosh(yR)�f and the distance travelled by R
is z = v(yR)t = sinh(yR)�f .Probability that resonance R is already formed at the
distance z from the origin becomes

Pf(z) = 1� exp(�z=zf ); zf = sinh(yR)�f (15)

The resonance is formed within the interval(z; z + dz) with probability density

�f (z) =
dPf(z)

dz
=

1

zf
e�z=zf (16)

Assuming a standard exponential decay law, the probability density for decay in the
interval (z; z + dz) of resonance produced in z1 is

�d(z) =
1

zd
exp[�(z � z1)=zd]; zd = v(yR)td = sinh(yR)�d

where �d is the decay time in the rest frame of the resonance. Probability density
P (z; t; yR) in Eq.(13) is then given as (t suppressed)

P (z; yR) =
Z z

0
�f(z1)�d(z � z1)dz1 =

1

zf � zd
[e�z=zf � e�z=zd] (17)

where
zf = sinh(yR)�f ; zd = sinh(yR)�d

Note that in our model the z and t of resonance decay are stronly correlated

P (z; t; yR) = P (z; yR)�(t� z

v(yR)
)

and P (z; yR) is P (z; t; yR) as mentioned below Eq.(4).
It is easy to see that P (z; yR) satis�es the consistency criteria: (i) Integral from

0 to1 of P (z; yR) is equal to 1,(ii) for zf ! 0 particles are formed immediately and
P (z; yR) approaches (1=zd)exp(�z=zd) as expected, (iii) for zd ! 0 particles decay
immediately and P (z; yR) approaches (1=zf)exp(�z=zf ) as it should.

Function P (z; yR) for negative z is given as P (z; yR) = P (�z; yR). According
to Eq.(1) the correlation function is expressed in terms of the Fourier transform of
�(z;K). As seen from Eq.(13) the z-dependence is given only by P (z; yR). Note that
we consider two pions of equal energy but di�erent longitudinal momenta.In such a
situation the time of resonance decay does not enter the results. We shall therefore
need the Fourier transform (FT in what follows) ~P (q; yR) de�ned as follows

~P (q; yR) =
Z
1

�1

dzeiqzP (z; yR) (18)

Inserting Eq.(17) into Eq.(18) we get

~P (q; yR) =
1� zfzdq

2

[1 + (zfq)2][1 + (zdq)2]
(19)
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where ~P (q; yR) is normalized by ~P (q = 0; yR) = 1. The �nal expression is obtained
by Eqs.(1),(13) and (19), inserting branching ratio BR(R) for the decay of resonance
R to a pion of given type:

jP (q)j2 � C2(q;K) =

�����
P

R
~P (q; yR)wR(K)P

R wR(K)

�����
2

(20)

where ~P (q; yR) is given by Eq.(19), wR(K) is obtained via Eqs.(8) and (13)

wR(K) = ~fR(K):
dnR
dy

:BR(R) (21)

with yR given by Eq.(7) for a decay to two pions. Finally ~fR(K) comes from Eq.(10)
after having normalized ~fR(K) = C(M2 � 4m2

T )
�1=2 by the condition

Z
~fR(K)d�pTdpT = 1

In this way we �nd

~fR(K) =
2

�

1p
M2 � 4m2

1q
M2 � 4m2

T

(22)

for the equal mass case.
For the unequal mass case we �nd in the same way

~fR(K) =
1

2�

1

k

1q
k2 � p2T

(23)

where k is given by Eq.(11). Functions ~fR(K) are proportional to the probability
that a resonance decay leads to a pion with 4-momentum K = (k1 + k2)=2, see
Eq.(2).

Formation time of resonances corresponds to a process in which resonances are
- in the statistical average- produced along the boost invariant curve given by

� 2f = t2 � z2 (24)

In a more realistic model one might think about resonances produced by freeze-out
of a thermalized system. The time �f in our model mimics the proper time of the
freeze-out, but our model does not contain the thermal distribution of resonance
momenta within the system at the freeze-out.

Contribution of directly produced pions

In an inside-outside cascade model with hydrodynamical evolution and and with
thermalized matter decoupling at (t,z) given by Eq.(24) it is easy to treat directly
produced pions and resonances on an equal basis. Both are produced according to
Bose - Einstein, or in some approximation, Boltzmann distribution, and after decays
of resonances one can calculate the correlation function C2(q;K).

On the other hand it is not clear whether the hydrodynamical concepts are
applicable to a hadronic collision. In our simple model we shall treat direct pions and
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their contribution to the correlation function in the same way as that of resonances,
taking direct pions as products of decay of a resonance with a vanishing life-time.
Such a treatment may provide at least some feeling of what may be the e�ects of
directly produced pions.

The life-time of a resonance �d � �h=� is approaching zero when � is increasing.
A resonance with a large width thus corresponds to vanishing �d and zd in Eq.(17).
Formation time is taken as equal to that of all other resonances. Taking a large
width amounts to integrating over massses of the resonance with a Breit - Wigner
distribution. For simplicity we shall take here only a single value of mass. An object
with a large width is similar to the behaviour of the S-wave, isospin zero phase shift
in �� scattering. In such a situation we need to add one line to Table 1. Taking
the mass of the l=0, I=0 �� resonance as equal to that of the �-meson we get the
following parameters

yR = 1:67; sinh(yR) = 2:56; �d = 0; zd = 0;

zf = 2:56�f ; ~fR(KT = 0) = 0:618; BR(�) = 1

Rapidity density of "�" production is chosen in such a way as to obtain the desired
fraction rdir of direct pions.That means that w�(K) entering Eq.(19) is determined
by the condition

rdir =
direct pions

all pions
=

w�(K)

w�(K) +
P

R wR(K)

where the sum over R includes other resonances.The calculation then proceeds as
above according to Eq.(19).

3 Correlations of two identical pions

In this Section we shall calculate the correlation function C2(q;K) for identical pions
in our model and compare the results with data.The calculation contains two free
parameters: the formation time �f and the ratio rdir of directly produced pions to
all pions in the �nal state.

Calculation of the correlation function proceeds via Eq.(20) where ~P (q; yR) is
given by Eq.(19) and wR(K) by Eqs.(21) and (22) or (23) depending on whether
resonance decays to two pions or to a pion and another particle.

In �+p interactions at 16 GeV [24] the authors have identi�ed meson resonances
�; !; �0 and f2. Relative contributions of di�erent resonances were found to be
strongly pT -dependent; pions from �- and !-decays populating mostly the low pT
region, those from � and f2 decays dominating at higher pT . In the low pT region it
seems that

�0 : ! : � : f2 � 0:2 : 0:2 : 0:05 : 0:03

as ratios of fractions of the total �� yield.
In pp interactions at 400 GeV/c about a half of pions is estimated to be produced

directly (see Table 9 of Ref.[25]). Resonances, most important for pion production
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in the region xF � 0:1 have inclusive cross-sections of the following unnormalized
ratios (see Table 6 of Ref.[25]):

< � >: ! : f2 :< K� >: � � 14 : 13 : 3 : 3; 5 : 0:6 (25)

where < � > denotes averaging over three charged states and < K� > over four of
them.

In pp collisions [26] at CERN - ISR with
p
s = 52:5GeV , inclusive production of

some of vector and tensor mesons has been measured. Results are consistent with
extrapolations of data from lower energies and the fraction of pions and kaons due to
decays of resonances has been estimated to be larger than 0.55. Refs.[24-26] contain
rather complete lists of papers in which resonance production in hadronic collisions
has been studied. Patterns of data in di�erent experiments are qualitatively sim-
ilar and roughly consistent with expectations based on quark-recombination models
[27,28] or Lund Fritiof model [29].

We shall now proceed to calculations of the correlation function C2(q;K). We
would like to stress that it is not our aim to get accurate quantitative results. This
is hardly possible at least for two reasons: �rst - our model is rather simpli�ed and
second - knowledge of resonance production in hadronic collisions is not complete.
We would rather like to gain a qualitative insight into the question of whether a
sum of resonance decay contributions and of direct pions can explain the observed
correlations of identical pions and how the correlation patterns depend on the value
of the resonance formation time �f and on the ratio rdir of direct to all pions. To
start with we have to �x some parameters entering the calculations. We shall take
the 4-vector K in Eq.(2) as corresponding to pT � 0 and y � 0 in the c.m.s. of
hadronic collision. Rapidity yR of a resonance of mass M decaying to two pions is
then given by Eqs.(7) or (12), where transverse mass reduces to the pion mass. We
shall treat three-body decays ! ! 3� and � ! 3� as two- body decays ! ! �d
and � ! �d with "d" denoting a "dipion". The mass md in the !-decay is taken
as md = md(!) = 470MeV and md(�) = 350MeV what corresponds to symmetric
decay kinematics. In this case rapidity of a resonance decaying to a pion with y = 0
and small pT is given by Eq.(12).

yR = ln(� +
p
�2 � 1); � =

M2 � (m2
d �m2)

2mM
(26)

This expression is valid also for the decay K� ! K�. All parameters entering
our calculation of C2(q;K) via Eq.(19) are given in Table 1, which contains in
the last row also parameters concerning directly produced pions. We shall brie
y
recapitulate symbols in Tab.1 and relations de�ning them: yR is the rapidity shift
between a resonance and its decay product, see Eqs.(7) and (12) for equal resp.
unequal mass cases,�d = 1=� where � is the resonance width, zd = sinh(yR)�d is the
mean decay distance; zf = sinh(yR)�f where �f is the formation time of a resonance;
~fR(K) is a kinematical factor proportional to the probability density of producing a
pion with a given K in the resonance decay. Branching ratio BR(R) is recalculated
to an average charge state of the resonance. For instance in the case of the � meson
we have three charged states.We assume that in the central rapidity region

dn(�+)

dy
� dn(�0)

dy
� dn(��)

dy
� dn�

dy
(27)
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In the sum over �+, �0 and �� decays we shall have 2�� + 2�0 +2�+. For dn�=dy = 1
we shall thus have two like-sign pions. This factor is included into BR(�). In the
column AdnR=dy we give non-normalized ratios of central rapidity density which are
guessed from data of Ref.[25]. The symbol dnR=dy denotes rapidity density averaged
over charged states of resonances in the spirit of Eq.(27). The correlation function
is then given by Eqs.(19-21).

According to Eq.(20) C2(q; k) is a weighted sum of contributions of individual
resonances. To see that resonances and direct pions give quite di�erent contribu-
tions we present in Fig.2 correlation functions corresponding to the assumption that
all pions are decay products of a particular resonance - the weight wR(K) of this
resonance is 1 and all other weights vanish. The contribution of direct pions is
calculated in the same way and also presented.

In the same Fig.2 we plot also the data of EHS/NA-22 Collaboration given
in Fig.5b of Ref.[16]. The data correspond to averaging over transverse momenta
0 < QT < 40MeV=c and this narrow interval permits us to compare our calculations
done for small transverse momenta with this data.

The interpretation of Figs. 2a, 2b and 2c is rather simple. In Fig.2a corres-
ponding to �f = 0:2 fm=c direct pions are originated by decay of a resonance with
formation time of 0.2 fm/c and vanishing mean life-time for the decay. Because of
that direct pions are created within a short distance from the collision point and
the Fourier Transform of this density of sources is rather broad in q. A typical
value of q for directly produced pions is �h=sinh(yR)�f � 0.4 GeV/c. For resonances
like �;�; f2; K

� characteristic time is increased by their decay time, for �d � 1.3
fm/c, corresponding to a resonance width of about 150 MeV, typical longitudinal
momentum is �h=sinh(yR)�d � 60 MeV/c.

With increasing formation time both resonance contribution and that of direct
pions become steeper in q. For �f equal to 0.2 or 0.4 fm/c the contribution of direct
pions decreases slower than the data so that a cocktail composed of resonance decay
products and of direct pions has a chance to describe the data,although at the price
of increasing rdir for increasing �f .

For �f �1 fm/c even the contribution of direct pions decreases faster than the
data and any cocktail composed of resonance decay products and direct pions is
bound to fail.

In Fig.3 we show the dependence of C2(q) on both �f and rdir.As can be seen in
Fig.3a a reasonable qualitative agreement with data is obtained for �f � 0.2 fm/c
and rdir � 0.50 - 0.6. For �f �0.4fm/c the agreement can be reached with rdir �0.7
which seems to be excluded by data on resonance production preferring a lower
fraction of directly produced pions.

In Figs.2 and 3 our curves are somewhat below the point with the lowest value
of q.This might be due to the fact that we have not included the contribution of
�.For the study of this point one would need to take into the account also details of
the binnig procedure.

In our simpli�ed model transverse momenta of resonances are put equal to zero.
With transverse momenta of resonances included we expect that formation times �f
required by the data will slightly increase, since resonances moving not exactly along
the z-axis would need more time to decay in the region with the same longitudinal
dimension.
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4 Formation time of hadrons and the evolution of

pA and AB interactions

In the present section we shall discuss the relationship between the value of the
formation time and the development of cascades in pA and AB interactions. We
assume that in a pA interaction the incoming proton interacts with � nucleons in
the nucleus A. Between two subsequent nucleon-nucleon subcollisions only hadrons
with (Lorentz dilated ) formation time smaller than time interval between two sub-
collisions.

We assume that in the cms frame of a nucleon-nucleon subcollision the fragment-
ation time of a hadron is given by the following expression

tf = �fcosh(y) (28)

where y is the rapidity in this system and cosh(y) is the usual factor of Lorentz
time-dilation. We shall take the following form for the probability that a hadron
(resonance or directly produced pion) with rapidity y has been formed in time t
after the collision

P (t; y) = 1� e�t=tf (29)

The mean time between two subsequent collisions of a given nucleon is

t0 =
�

2
c
(30)

where 
 is the Lorentz contraction factor, 
 � 10 at the CERN SPS and � is the
mean free path for a nucleon in the nucleus at rest. The factor 2c in the denominator
the relative velocity of the two colliding nucleons.A typical value of t0 is thus about
0.15 fm/c. The time intervals between the subsequent subcollisions are Poisson
distributed with the mean value t0 and the averaged probability that a hadron with
rapidity y is formed between two subcollisions becomes

P (y) =
Z
1

0
(1� e(�t=t0))

1

t0
e�t=t0dt = 1� tf

tf + t0
= 1� �fcosh(y)

t0 + �fcosh(y)
(31)

The expression for P(y) depends only on the ratio �f=t0 which can be estimated
only very roughly as follows. The value of t0 is about 0.15.

Our analysis of EHS/NA- 22 Collaboration data has given the value of �f as
0:2 � � � f � 0:4. As a very crude estimate we thus obtain for the ratio � = t0=�f
values in the interval 0.5 to 1. The resulting probability

P (y) = 1� cosh(y)

� + cosh(y)
(32)

gives the production of hadrons in a given subcollision. For � = 0 we get P(y)=0 as
expected and the picture of subcollisions goes over to that of the wounded nucleon
model with full fragmentation occuring only after the last subcollision.
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5 Comments and Conclusions

We have described above a very simpli�ed model of e�ects caused by resonance
formation and decay on Bose - Einstein correlations of identical pions in hadronic
collisions. Due to the simplicity of the model our results should rather be considered
as hints to what one can expect in more realistic calculations. In particular our
treatment of direct pions is rather model dependent. If it would turn, for instance,
that direct pions are produced faster than in our model, their contribution to C2(q)
would be broader and to get the observed shape of C2(q) the resonance contribution
to C2(q) should be narrower what would mean longer �f .

In our model we have assumed that all resonances are produced from the same
point (t,z)= (0,0). In a more realistic calculation the resonances should be produced
from a space-time region with longitudinal radius of about R/
 where R is the
nucleon radius and 
 is the Lorentz contraction factor, for the SPS CERN energy
region 
 � 10. Taking this into account our correlation function C2(q;K) would
be multiplied by the FT of the density distribution of sources of resonances, what
would slightly decrease the resulting values of �f .

With this reservation we can summarise our results.

� The correlation function C2(q;K) for ~K � 0 as measured by the EHS/NA-22
Collaboration [16] in �+ interactions at 250 GeV/c can be understood as due
to an interplay of resonance decays and of directly produced pions provided
that the fraction of directly produced pions rdir � 0:5 and the formation time
of resonances and direct pions is rather short �f � 0.2 fm/c. For the formation
time of �f � 0.4 fm/c the fraction rdir increases to about 0.7 and for �f � 1
fm/c consistency with data cannot be achieved.

� Note that our estimate of the fraction of directly produced pions is larger than
results obtained by Lednick�y and Progulova [23].

� Our simple model shows in a very transparent way a strong dependence of the
correlation function C2(q;K) on the value of K=(k1 + k2)/2 and in particular
on the average transverse momentum KT of the two identical pions.

� In our model resonance formation and decay plays an important role and as
a consequence of that the correlation function C2(q) is quite di�erent from a
Gaussian. This indicates that the data on correlations in hadronic collisions
should be rather �tted by functions which correspond to a sum of directly
produced pions and one or two resonances.When taking only one resonance
one should probably take parameters of the � to take into account resonances
of width comparable to that of the � and when taking also a second resonance
one could take parameters of the ! to take into account also objects with a
longer life-time.

Models analyzing e�ects of resonance formation and decay on correlations of
identical particles have been studied earlier by numerous authors [30- 40]. Our
model is also presented in [41]. Conclusions about resonance formation times and
average life-times have been made by Lednick�y and Progulova [23] who have con-
sidered a model containing �-mesons and direct pions, by Cs�org�o et al. [34] who
have evaluated analytically the average formation time of resonances as 0.77�0.1
fm/c and mean life-time of resonances as 2.88 fm/c and used then the Monte Carlo
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program SPACER to analyze data on Si+Au collisions at 14.5GeV per nucleon and
O+Au interactions at 200 GeV/nucleon.

Padula and Gyulassy [36-38] have analyzed pp and �pp data at CERN ISR energies
and in particular the sensibility of data to the abundance of resonances. They have
found that the data are inconsistent with the full resonance fractions as predicted
by the Lund model.Their results are consistent with those of Kulka and L�orstad [40]
and with our results at lower energies as shown in Fig.2 above. The reason of this
result is due to to the fact that resonances tend to increase RL whereas direct pions
work in the opposite direction.

In most of analyses the presence of resonances leads to marked deviations from
Gaussian shapes of the correlation function C2(q), reasons for that being simply
visible in our model.

It would be most interesting to have data on correlation functions for pp, pA,
and AB collisions at the same energy which would permit to study di�erences of
correlation functions as a function of the atomic number of colliding particles and
search for the onset of collective expansion, which should be visible via long time
delays [42-45].Unfortunately the increase of� z2 � may be due both to an increase
of the time delay and to the increase of the abundance of resonances and these two
mechanisms should be disentangled before �rm conclusions could be done.A step in
this direction has been recently performed by Wiedemann [46] in an interesting ana-
lysis which combines hydrodynamics in heavy-ion collisions with e�ects of resonance
decays.

There is a lot of most interesting aspects of data which we have not discussed
in the present paper. Apart of the pT -dependence of correlation function these in-
clude at least: multiparticle correlations and intermittency, correlations of unlike
pions which appear naturally in models based on resonance decays, and the rapid-
ity dependence of correlation functions.We have also limited ourselves to a simple
situation with two identical pions having the same energy and have studied only
the dependence of the correlation function on the di�erence of the longitudinal mo-
menta QL. The model can be generalized also to other types of variables upon which
the correlation function depends and we hope to return to these issues in the near
future.

Acknowledgements.The authors are indebted to J.-J.Dugne,P.Foka, J.-F. Ma-
thiot, R.Lietava, S.Louise, V.Morenas, G.Roche, B.Tom�a�sik, and U.Wiedemann for
valuable discussions and to P.Rosinsk�y for instructive comments. Two of us (J.P.
and N.P.) would like to thank B.Michel and G.Roche for the hospitality at the
Laboratoire de Physique Corpusculaire of the Blaise Pascal University at Clermont-
Ferrand where a part of this work has been done. This research was supported in
part by the Slovak Grant Agency for Science, Grant No.2/1157/94 (A.N.)

12



Figure Captions

Fig.1 Two interfering amplitudes for production of identical pions with momenta
~k1 and ~k2.

Fig.2 Contributions of individual resonances and of directly produced pions to
the correlation function C2(q). Data points taken from Fig.3b of Ref.[31]. Contri-
butions are plotted for three values of the formation time: a) �f= 0.2 fm/c; �f =
0.4 fm/c; c) �f = 1 fm/c.

Fig.3 Comparison of data [31] on C2(q) for 0 < pT < 0:04 GeV/c with coctails
of resonances and directly produced pions: a) �f = 0.2 fm/c; b)�f = 0.4 fm/c.
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Table 1: Table 1. Basic parameters for calculations of identical pions (lengths in
GeV �1)

Res: yR sh(yr) �d zd zf fR(K) BR(R) Adnr
dy

w(r)

� 1.67 2.56 6.66 16.96 2:56�f 0.618 2 0.31 0.38
! 1.257 1.615 118.6 191.6 1:615�f 1.615 0.89 0.31 0.45
f2 2.35 5.2 5.41 28.1 5:2�f 0.21 0.57 0.07 0.01
K� 1.47 2.06 41.2 84.9 2:06�f 0.96 1.33 0.08 0.1
� 1.26 1.62 8.3 13.5 1:62�f 1.57 1.33 0.11 0.23

Table 2: Table 2. Dependence yR = yR(KT ) for a selected set of resonances

KT [GeV=c] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Resonance
� 1.67 1.62 1.45 1.24 1.03 0.80 0.56 0.205
f2 2.19 2.14 1.98 1.80 1.61 1.43 1.27 1.11 0.96
K� 1.47 1.41 1.23 1.01 0.77 0.34
� 1.25 1.19 0.99 0.74 0.40
! 1.24 1.18 0.98 0.73 0.38
� 0.76 0.67 0.31
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