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Introduction

Two basic questions about nature that have been
repeatedly raised in the physics literature are :

Can space-time coordinates be measured with
arbitrary precision ?
Is there a fundamental and elementary length scale
in nature ?

These issues are related to the quantum structure of
space-time relevant at the Planck scale.

Noncommutative Geometry is one of the candidates for
describing physics at that regime.
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History - ancient

Bohr & Rosenfeld (1933) tried to model uncertainties in
measurement of space-time coordinates from
fluctuations of gravitational fields.

Heisenberg (1938) proposed the idea of an elementary
length scale in particle physics.

Markov (1940) and Snyder (1947) first introduced the
idea of a quantized structure of space-time.

De Witt (1962) discussed the modification of geometry
at Planck scale due to the measurement process.
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History - modern..

More recently, in the 1980’s Connes suggested that
noncommutative geometry might be of interest for field
theories and Woronowicz and Majid discussed the
application of quantum groups in quantum field theories.

In 1990, ambiguities in space-time measurements
arose in the context of superstring theories in the work
of Amati, Cialfaloni and Veneziano.

In 1994, S. Doplicher, K. Fredenhagen and J. E.
Roberts developed a more concrete model of
space-time quantization induced by classical gravity.

Similar ideas have appeared in the work of Madore,
Mourad (1995) and Ashtekar (1998) also.
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History - related..

A related field goes by the name of Fuzzy Physics,
proposed by J. Madore (1992), H. Grosse and P.
Presnajder (1995) and developed by many others.

It seeks to provide a finite ultraviolet cutoff preserving
the symmetries of the original model.

This is useful for numerical simulations, perhaps
relevant for gravity as well.
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Space-time UR

Heisenberg’s Principle
+ =⇒ Space-time uncertainty relations

Einstein’s Theory

Measuring a space-time coordinate with an accuracy δ
causes and uncertainty in the momentum ∼ 1

δ .

Neglecting rest mass, an energy of the order 1

δ is
transmitted to the system and concentrated for some
time in the localization region. The associated
energy-momentum tensor generates a gravitational
field.

The smaller the uncertainties in the measurement of
coordinates, the stronger will be the gravitational field
generated by the measurement.
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Space-time UR

To probe physics at Planck Scale lp, the Compton
wavelength 1

M of the probe must be less than lp, hence
M > 1

lp
, i.e. Planck mass.

When this field becomes so strong as to prevent light or
other signals from leaving the region in question, an
operational meaning can no longer be attached to the
localization.

Similarly, observations of very short time scales also
require very high energies. Such observations can also
form black holes and limit spatial resolutions leading to
a relation of the form

∆t∆x ≥ L2, L = fundamental length

.
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Space-time UR

Based on these arguments, Doplicher, Fredenhagen and
Roberts (1994) arrived at uncertainty relations between
the coordinates, which they showed could be deduced
from a commutation relation of the type

[qµ, qν ] = iQµν

where qµ are self-adjoint coordinate operators, µ, ν run
over space-time coordinates and Qµν is an antisymmetric
tensor, with the simplest possibility that it commutes with
the coordinate operators.
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Geometry & commutative algebra

General Relativity describes the dynamics of space-time,
assumed to be a smooth manifold. The geometry is
determined by Einstein’s equations.

The geometry of a locally compact topological space X
admits a dual description in terms of the commutative C∗

algebra of smooth functions on X, denoted by A0(X). The
algebraic operations are the standard pointwise
multiplication and addition of functions and the ∗ or adjoint
operation is the standard complex conjugation. This
algebra also has a norm compatible with the ∗ operation.

K.S.Gupta, NCGR-I, June 2007 – p. 11



Geometry & commutative algebra

A theorem due to Gelfand and Naimark says that every
commutative C∗ algebra can be written in the form A0(X)

for some uniquely determined space X.

Thus mathematical structures on X, e.g. integrations,
derivations, vector fields etc. can be formulated
equivalently in terms of the commutative algebra A0(X).

The advantage of the algebraic formulation is that many
of these mathematical structures on the C∗ algebra
continues to make sense even when the algebra
becomes noncommutative.

K.S.Gupta, NCGR-I, June 2007 – p. 12



Noncommutative geometry

An example of noncommutative geometry is provided by
the d-dimensional Groenewold-Moyal spacetime or GM
plane, which is an algebra Aθ(R

N ) generated by elements
x̂µ (µ ∈ [0, 1, 2, · · · , N − 1]) with the commutation relation

[x̂µ , x̂ν ] = iθµν1 ,

θµν being real, constant and antisymmetric in its indices.
This algebra can be represented by functions of commuting
variables with a twisted product

f ∗ g(x) = fei/2
←−
∂ µθµν−→∂ νg.

The ∗ product defines the associative but noncommutative
algebra Aθ(R

N ).

K.S.Gupta, NCGR-I, June 2007 – p. 13



NCG

The star product provides the multiplication map in the
algebra

µθ : Aθ(R
N) ⊗Aθ(R

N ) −→ Aθ(R
N)

µθ : f ⊗ g −→ fei/2
←−
∂ µθµν−→∂ νg ≡ f ∗ g

In terms of the twist element Fθ = ei/2∂µ⊗θµν∂ν

f ∗ g = µθ(f ⊗ g) = µ0[Fθf ⊗ g]

where µ0 is the pointwise multiplication map for θ = 0.

K.S.Gupta, NCGR-I, June 2007 – p. 14



NCG

In the commutative case, we know that general relativity
is a theory invariant under the symmetry group of
diffeomorphisms. Assuming this continues to hold at the
Planck scale where noncommutative geometry is
supposed to be relevant, we must now address the issue
of how diffeomorphism symmetry acts on the algebra
Aθ(R

N).

For that, we first discuss how a symmetry group acts on a
general algebra. Then we shall go on to discuss how
diffeomorphisms act on A0(R

N ) and Aθ(R
N).
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Symmetry on algebra

Let A be an algebra. A comes with a rule for multiplying its
elements. For f, g ∈ A there exists the multiplication map µ
such that

µ : A⊗A → A ,

f ⊗ g → µ(f ⊗ g) .

Now let G be the group of symmetries acting on A by a given
representation D : h→ D(α) for α ∈ G. We can denote this
action by

f −→ D(α)f .
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Symmetry on algebra

The action of G on A⊗A is formally implemented by the
coproduct ∆

∆ : G −→ G ⊗ G

The action is compatible with µ only if a certain compatibility
condition between ∆(α) and µ is satisfied. This action is

f ⊗ g −→ (D ⊗D)∆(α)f ⊗ g ,

and the compatibility condition requires that

µ ((D ⊗D)∆(α)f ⊗ g) = D(α)µ(f ⊗ g) .
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Symmetry on algebra

The latter can be expressed neatly in terms of the following
commutative diagram :

f ⊗ g
∆

- (D ⊗D)∆(α)f ⊗ g

µ(f ⊗ g)

µ

?

- D(α)µ(f ⊗ g)

µ

?

If a ∆ satisfying the above compatibility condition exists, then
G is an automorphism of A. If such a ∆ cannot be found, then
G does not act on A.
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Diffeomorphism

We start by giving an algebraic description of diffeos in the
commutative case. This will help us to identify the essential
structures, which we shall then carry over to the NC case.
Diffeos are generated by vector fields defined by

ξ = ξµ
∂

∂xµ

Denote the space of vector fields by V . Commutator of two
vector fields ξ, η ∈ V is another vector field in V given by by

[ξ, η] = ξ × η = (ηµ(∂µξ
ρ) − ξµ(∂µη

ρ))
∂

∂xρ
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Diffeos

The Leibniz rule for the diffeos is given by

(ξ(f.g)) = (ξf).g + f.(ξg)

where f, g ∈ A0(R
N ) and are multiplied by the usual

commutative pointwise multiplication rule. Leibniz rule is
nothing but a definition of coproduct for the diffeos, abstractly
defined by

∆0 : V −→ V ⊗ V, ∆0(ξ) = ξ ⊗ 1 + 1 ⊗ ξ

Thus the coproduct structure is essential for stating the
Leibniz rule.
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Diffeos

It can be shown that the coproduct satisfies the condition

[∆0(ξ),∆0(η)] = ∆0(ξ × η)

i.e. the coproduct is compatible with the algebraic structure.
This makes the space of vector fields V both and algebra and
a coalgebra, or a bialgebra. Together with counit ǫ and
antipode S defined by

ǫ(ξ) = 0 S(ξ) = −ξ

V acquires the structure of a Hopf algebra.
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Diffeos

Diffeos generate a coordinate transformation

xµ −→ xµ + ξµ(x)

Under an infinitesimal coordinate transformation, the change
of a scalar field φ is given by

δξφ(x) = −(ξ(φ(x))

For covariant vector fields we have

δξVµ = −ξρ(∂ρVµ) − (∂µξ
ρ)Vρ

and similarly for contravariant vector fields also. This can be
generalized to arbitrary tensor fields.
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Diffeos

Thus we have the algebra of infinitesimal diffeos given by

[δξ, δη] = δξ×η

with the coproduct

∆0δξ = δξ ⊗ 1 + 1 ⊗ δξ

This implies the important condition that

µ0{∆0(δξ)Vµ ⊗ Vν} = (δξ)(VµVν)

where µ0 denotes the usual pointwise multiplicative map
and the above statement shows that the commutative
diagram closes in this case.
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NC Diffeos

In the noncommutative case, we have the algebra Aθ(R
N )

with the multiplication map µθ. The work of Aschieri et al,
based on ideas of Drinfeld shows that

The coproduct ∆0 is not compatible with the multiplication
map µθ.

One can define a new twisted coproduct

∆θ = F−1
θ ∆0Fθ

which is compatible with µθ.

This implies that the Leibniz rule is modified when θ 6= 0.
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NC Diffeos

In this process, the action of any element of the diffeo
group on elements of Aθ(R

N ) is unchanged. How the
diffeo acts on products of elements of Aθ(R

N ) is modified
by the twisted coproduct.

We have so far not specified what the actual action of
diffeo generators are on elements of Aθ(R

N ). This is also
not unique. We shall describe briefly two proposal, one by
Wess and collaborators and another by Balachandran
and collaborators, which have strikingly different physics
contents.
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NC Diffeo - Wess

In Wess et al’s approach, the derivatives on Aθ(R
N ) are

defined by

∂∗µ ⊲ f ≡ ∂µf

The vector field ξ acts on Aθ(R
N ) by the differential operator

X∗ξ ⊲ f = (ξ.f) ≡ δ̂ξf

To see the Leibniz rule, note that

X∗ξ ⊲ (f ∗ g) = (ξ(f ∗ g))

To see how the Leibniz rule or the coproduct can be
obtained, it is useful to expand this to first order in θ.
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NC Diffeo - Wess

(ξ(f ∗ g)) = (ξ(fg +
i

2
θρσ(∂ρf)(∂σg)))

= (ξf)g + f(ξg) +
i

2
θρσ((ξ∂ρf)(∂σg) + (∂ρf)(ξ∂σg)) + ...

= (ξf) ∗ g + f ∗ (ξg)

− i
2
(∂ρ(ξµ∂µf)(∂σg) + (∂ρf)(∂σ(ξµ(∂mug)))

+
i

2
((ξµ(∂µ∂ρf))(∂σg) + (∂ρf)(ξµ(∂µ∂σg))) + ...

X∗
ξ ⊲ (f ∗ g) = (X∗

ξ ∗ f) ∗ g + f ∗ (X∗
ξ ∗ g)

−i
2
θρσ(([∂∗ρ , X

∗
ξ ]∗ ∗ f) ∗ (∂∗σ ∗ g) + (∂∗ρ ∗ f) ∗ ([∂∗σ, X

∗
ξ ]∗ ∗ g)) + ...

Comultiplication rule upto first order in θ

∆(X∗
ξ )(f ⊗ g) = (X∗

ξ ∗ f)⊗ g + f ∗ (X∗
ξ ⊗ g)

−i
2

((X∗

[∂∗

ρ ,ξ] ∗ f)⊗ (∂∗σ ∗ g) + (∂∗ρ ∗ f)⊗ ((X∗

[∂∗

σ ,ξ] ∗ g))
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NC Diffeo - Wess

The Leibniz rule to all orders in θ was obtained as

X∗ξ ⊲(f∗g) = µθ{e
−i/2θρσ∂∗

ρ⊗∂∗
σ(X∗ξ⊗1+1⊗X∗ξ )ei/2θρσ∂∗

ρ⊗∂∗
σ⊲(f⊗g)}

The coproduct for the diffeos acting on Aθ(R
N ) is given by

∆(δ̂ξ) = e−i/2θρσ∂∗
ρ⊗∂∗

σ(δ̂ξ ⊗ 1 + 1 ⊗ δ̂ξ)e
i/2θρσ∂∗

ρ⊗∂∗
σ

With suitable definitions of counit and antipode, it can be
shown that the diffeos acting on Aθ(R

N ) has a Hopf algebra
structure.
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NC Poincare - Wess

The Poincare algebra is a subalgebra of the diffeo
algebra. This subalgebra in the NC case also has a Hopf
algebra structure with a twisted coproduct.

This allows to write relativistically invariant actions on
Aθ(R

N ).

The various structures of differential geometry, including
tensor calculus, metric, connection, curvature etc. can be
defined in Aθ(R

N ).

The NC version of Einstein-Hilbert action has been
constructed, which explicitly depend on the
noncommutative parameter θ.
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NC Poincare - Wess

The metric can be defined as

Gµν =
1

2

“
Ea

µ ∗ Eb
ν + Ea

ν ∗Eb
µ

”
ηab

where a = 1, ..4, ηab is the flat Minkowski space metric. Wess et al take the classical
vierbein ea

µ for Ea
µ. Thus Gµν is symmetric, theta dependent and has the correct

commutative limit. Inverse metric Gµν∗ is defined by

Gµν ∗Gµρ = δρ
µ

Christoffel symbol and curvature tensors have the forms

Γσ
αβ =

1

2

“
(∂∗α ⊲ Gβγ + ∂∗β ⊲ Gαγ − ∂∗γ ⊲ Gαβ

”
∗Gγσ∗

Rσ
µνρ = ∂∗νΓσ

µρ − ∂∗µΓσ
νρ + Γβ

νρ ∗ Γσ
µβ − Γβ

µρ ∗ Γσ
νβ

Rµν = Rσ
µσν

R = Gµν∗ ∗Rµν
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NC Poincare - Wess

The action is defined as

S =

Z
d4xE∗ ∗R

where

E∗ =
1

4!
ǫµ1...µ4
a1...a4

Ea1
µ1
∗ ... ∗ Ea4

µ4

This has the correct transformation properties under diffeos, it is invariant upto total
derivatives. But is is not real.

The real Einstein-Hilbert action is defined by

SEH =
1

2

Z
d4x E∗(R+ R̄)

The equations of motions can be obtained from this action, but they are not easy to
solve.
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NC Diffeo - Bal

For any α ∈ Aθ(R
N), one can define two operators α̂L,R acting

on Aθ(R
N ):

α̂Lξ = α ∗ ξ, α̂Rξ = ξ ∗ α for ξ ∈ Aθ(R
N) ,

α̂L,R commute and

[x̂µL, x̂νL] = iθµν = −[x̂µR, x̂νR].

Hence ,

x̂µc =
1

2

(

x̂µL + x̂µR
)

gives a representation of the commutative algebra A0(R
N):

[x̂µc, x̂νc] = 0.
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NC Diffeo - Bal

The Lorentz group L↑+ ( as also all diffeos) acts on functions
α ∈ Aθ(R

N ) in just the usual way in the approach with the
coproduct-twist:

[U(Λ)α](x) = α(Λ−1x)

for Λ ∈ L↑+ and U : Λ → U(Λ) its representation on

functions. Hence the generators Mµν of L↑+ have the
representatives

Mµν = x̂c
µpν − x̂c

νpµ,

pµ = −i∂µ

on Aθ(R
N ).
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NC Diffeo - Bal

Vector fields v are generators of the Lie algebra of the
connected component of the diffeomorphism group acting
on functions. Just as for Mµν, which is a special vector field,
we now see that v can be written as

v = vµ(x̂c)∂µ .

Both Mµ,ν and vector field look like the familiar expressions
for θµν = 0. Nevertheless, their action on Aθ(R

N ) must
involve the twisted coproduct.
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NC Diffeo - Bal

We now see how Leibnitz rule is modified for Mµν . We can write, as an identity,

Mµν(α ∗ β) = (Mµνα) ∗ β + α ∗ (Mµνβ)

+
1

2

ˆ
(adx̂µα) ∗ (pνβ)−

(pνα) ∗ (adx̂µβ)− µ↔ ν
˜

which on using the definition of Mµν and the antisymmetry of θµν gives

Mµν(α ∗ β) = (Mµνα ∗ β) + α ∗ (Mµνβ)−

−1

2

ˆ
((p · θ)µα) ∗ (pνβ)−

−(pνα) ∗ ((p · θ)µβ)− µ↔ ν
˜
.

(p · θ)ρ := pλθ
λ
ρ .

Thus the Leibnitz rule is twisted.

K.S.Gupta, NCGR-I, June 2007 – p. 35



NC Diffeo - Bal

The twist is exactly what is required by the coproduct ∆θ:

∆θ(Mµν) = ∆0(Mµν)

−
1

2

[

(p · θ)µ ⊗ pν − pν ⊗ (p · θ)µ − µ↔ ν
]

∆0(Mµν) = Mµν ⊗ 1 + 1 ⊗Mµν ,

Thus

mθ[∆θ(Mµν)α⊗ β] = Mµν(α ∗ β).
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NC Diffeo - Bal

We conclude that The Poincare’ and hence the full diffeo
group is based on x̂c and are isomorphic to the same
groups in the θµν = 0 model.

From this we can conclude that the pure gravity action is
unaffected by noncommutativity.

This is very different from the conclusion of Wess at al
and the difference lies in the action of vector fields on
Aθ(R

N ).
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Remarks

So far we have discussed the physical motivations behind
considering noncommutative space-times, especially in
the context of gravity.

The diffeomorphism symmetry can be implemented in the
presence of space-time noncommutativity. This is
achieved by using twisted coproducts.

With the twisted coproduct, still one has a choice of the
action of diffeo generators on the GM plane and different
choices lead to dramatically different physics. In Wess et
al’s approach, the NC gravity action depends explicitly on
θ whereas in Bal et al’s approach, pure gravity is
unaffected by noncommutativity.
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Examples in 1+1 dimensions

Here we work essentially in the approach of Wess et al.

Although Wess et al wrote down the Einstein-Hilbert
action, it is quite complicated, and to our knowledge
solutions to those equations have not yet been found.

We shall be looking into simple in 1+1 dimensional gravity
models, including cases with cosmological constant.

These theories can be cast as gauge theories and we
shall work in that formalism.

Twisted diffeos will play a crucial role in our analysis,
especially in the presence of cosmological constant.
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1+1d examples

We start with a noncommutative 1 + 1 dimensional
space-time and formulate two dimensional noncommutative
gravity using the noncommutative version of the SO(1,1)
gauge group. In the commutative case, we can think of the
SO(1, 1) gauge group as generated by a single Pauli matrix,
say σ2. In the noncommutative case, the gauge group has
two commuting generators, σ2 and the 2 × 2 identity matrix I,
the latter arising due to the noncommutativity of space-time.

K.S.Gupta, NCGR-I, June 2007 – p. 40



1+1d, Λ = 0

Consider the connection one form

A = ωσ2 + fI

where ω is the spin connection and f is an additional one
form. The corresponding curvature two form is

F = dA+ A ∧∗ A

= (dω + f ∧∗ ω + ω ∧∗ f) σ2 + (df + ω ∧∗ ω + f ∧∗ f) I

≡ F 1σ2 + F 2I ,

where ∧∗ is understood to be the ordinary wedge product,
except that the components of differential forms are now
being multiplied with the Groenewold-Moyal ∗-product.
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1+1d, Λ = 0

Let us also introduce a two component scalar field
φ = (φ1σ2 + φ2I). Using φ and F we can form the gauge
invariant action

S =
1

2

∫

Tr (φ ∗ F )

=
1

2

∫

φ1 ∗ F
1 + φ2 ∗ F

2 .

S is invariant under infinitesimal gauge transformations

F → F + i[υ , F ]∗ , φ→ φ+ i[υ , φ]∗ ,

where υ = υ1σ2 + υ2I is the gauge transformation parameter.
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1+1d, Λ = 0

We can rewrite S as

S =
1

2

∫

φ1 ∗ dω + φ2 ∗ df

=
1

2

∫

φ1 dω + φ2 df .

We thus infer that

dω = 0 = df

They give trivial solutions for gravity, just as in the
commutative case.
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1+1d, Λ 6= 0

Let us now direct our attention to the formulation of possible
gauge theories with nonzero cosmological constant and with
or without a dilaton. They are based on the gauge group
U(1, 1) ≈ SO(2, 1) × U(1) and its contractions. The presence
of the extra U(1) factor is due to the noncommutativity of the
theory. The associated Lie algebra so(2, 1) ⊕ u(1) is
generated by (Qa, Q2, Q3) ≡ (Pa, J, I) , a ∈ {0, 1} The
commutation relations among these generators are given by

[Pa, Pb] = −
1

2

Λ

s
εab(2J−sI) , [Pa , J ] = εa

bPb , [Pa , I] = [J , I] = 0 ,

Thus I is a central element. Here Λ is the cosmological
constant and s is a dimensionless parameter.
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1+1d, Λ 6= 0

We use the fundamental representation

P0 =
1

2

√

Λ

s
iσ3 , P1 =

1

2

√

Λ

s
σ1 , J =

1

2
(σ2 + sI) ,

where σi , (i = 1, 2, 3) denote the Pauli matrices.
Let us consider the connection one form A. It is composed of
the zweibein’s ea(a = 0, 1), the spin connection ω and the
additional one form k. Expanding in the Lie algebra basis, A
reads

A := AαQα = eaPa + ωJ +
Λ

2
kI , (α = 0, 1, 2, 3) .
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1+1d, Λ 6= 0

The curvature associated to A is F = dA+ A ∧∗ A , which gives

F =
h
dea +

1

2
εb

a(eb ∧∗ ω−ω∧∗ eb)+
1

2
Λ(k∧∗ ea + ea ∧∗ k)+

s

2
(ea ∧∗ ω+ω∧∗ ea)

i
Pa

+
h
dω + sω ∧∗ ω −

Λ

2s
εabe

a ∧∗ eb +
Λ

2
(k ∧∗ ω + ω ∧∗ k)

i
J

+
hΛ

2
dk +

Λ2

4
k ∧∗ k −

Λ

4s
habe

a ∧∗ eb +
Λ

4
εabe

a ∧∗ eb +
1− s2

4
ω ∧∗ ω

i
I .

Under the infinitesimal gauge transformations generated by υ = υaPa + υ2J + υ3I, we
have

A −→ A′ = A+ iD∗υ , D∗υ = dυ + i[υ ,A]∗

F −→ F ′ = F + i[υ , F ]∗ ,
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1+1d, Λ 6= 0

We now give the gauge theory action describing NC gravity
theories with nonzero cosmological constant, in two
dimensions. Generalizing from the commutative theory we
write,

S =

∫

Tr(ξ ∗ F ) ,

Here we introduced the 4-component scalar field

ξ = −
2s

Λ
ηaPa +

2

1 + s2
η2J +

1

Λ
η3I ,

and the trace is taken over the Lie algebra basis.
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1+1d, Λ 6= 0

Following the tensor calculus developed by Wess et al, the action can be shown to be
invariant under twisted diffeomorphisms.

δ
ζ̂
ξ = −X∗

ζ (ξ) := −ζα∂αξ

δ
ζ̂
(εµνFµν) = −X∗

ζ (εµνFµν)−X∗

(∂αζα)(ε
µνFµν) .

Using this we find

δζ̂(ξ ∗ εµνFµν) = −∂α
`
ζα(ξ ∗ εµνFµν)

´
,

or equivalently

δ
ζ̂
(ξ ∗ εµνFµν) = −∂α

`
X∗

ζα (ξ ∗ εµνFµν)
´
.

Thus under the infinitesimal “twisted” diffemorphisms generated by δζ̂ , the Lagrangian
changes by a total derivative:

Tr(ξ ∗ εµνFµν) −→ Tr(ξ ∗ εµνFµν)− ∂α
`
X∗

ζα (Tr(ξ ∗ εµνFµν))
´
,

and hence the action S is invariant.
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1+1d, Λ 6= 0

In terms of components, action S reads

S =

Z
ηa ∗

h
dea +

1

2
εb

a(eb∧∗ω−ω∧∗ eb)+
Λ

2
(k∧∗ ea +ea∧∗ k)+

s

2
(ea∧∗ω+ω∧∗ ea)

i

+

Z
η2 ∗

h
dω + sω ∧∗ ω −

Λ

2s
εabe

a ∧∗ eb +
Λ

2
(k ∧∗ ω + ω ∧∗ k)

i

+

Z
η3 ∗

h
dk +

Λ

2
k ∧∗ k −

1

2
habe

a ∧∗ eb +
1

2
εabe

a ∧∗ eb +
1− s2

2Λ
w ∧∗ ω

i
.

Recalling that one ∗-product can be removed under the integral, we get

S =

Z
ηa ∗

“
dea +

1

2
εb

a(eb ∧∗ ω − ω ∧∗ eb)
”

+ η2 ∗
“
dω − Λ

2s
εabe

a ∧∗ eb
”

+η3 ∗
“
dk +

1

2
εabe

a ∧∗ eb
”
.
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1+1d, Λ 6= 0, EOM

The equations of motion following from the S when the fields ηa, η2, η3 are varied are given
by

D∗ea := dea +
1

2
εa

b(ω ∧∗ eb − eb ∧∗ ω) = 0 ,

dω − Λ

2s
εabe

a ∧∗ eb = 0 ,

dk +
1

2
εabe

a ∧∗ eb = 0 .

They have the correct commutative limit obtained by replacing the ∗-product with the usual
pointwise product, given by

Dea = dea + εa
bω ∧ eb = 0 ,

dω − 1

2

Λ

s
εabe

a ∧ eb = 0 ,

dk +
1

2
εabe

a ∧ eb = 0 .

We now study the solutions of the equations of motion for various values of the parameters
Λ and s.
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1+1d, AdS2

The AdS2 solution is obtained by taking both Λ and s to be finite and letting Λ
s
→ Λ.

For Λ < 0, this commutative model has the well-known AdS2 solution given by the metric

ds2 = Λr2dt2 − 1

Λr2
dr2

It gives the connection

At =
iΛr

2

0
@ 1 1

−1 −1

1
A , Ar =

1

2r

0
@ 0 1

1 0

1
A .

The zweibein’s and the spin connection have the form

e0t =
√

Λr , e1t = 0 , e0r = 0 , e1r =
1√
Λr

ωt = −Λr , ωr = 0 .

It can be easily verified that these satisfy the commutative equations of motion.
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1+1d, AdS2

Our action is invariant under twisted diffeos. This implies

[x0 , x1] = iθ
(twisted diffeos)

−→ [t , r] = iθ .

The commutative solutions are time independent. So all
the ∗ products collapse to pointwise products when they
are plugged into the NC equations of motion.

This implies that the commutative AdS2 geometry is a
solution to our noncommutative gauge theory.
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1+1d, BH

In this case we keep Λ finite and take s→ ∞. Using the light
cone coordinates

x± = x0 ± x1 .

the action takes the form
∫

dx+dx−
[

η+ ∗
(

de+ +
1

2
(ω ∧∗ e

− − e− ∧∗ ω)
)

+ η− ∗
(

de− −
1

2
(ω ∧∗ e

+ − e+ ∧∗ ω)
)

+ χ ∗ dω + η3 ∗ dk + η3 ∗ e
+ ∧∗ e

−
]

,

where χ := η2 = eϕ and ϕ is the dilaton field.
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1+1d, BH

Let us first note that the variation with respect to k gives
η3 = constant. We set this constant equal to Λ.
Variations with respect to the e− and e+ give

e+ = −
1

Λ
D∗η+ = −

1

Λ

(

dη+ −
1

2
(η+ ∗ ω + ω ∗ η+)) ,

e− =
1

Λ
D∗η− =

1

Λ

(

dη− +
1

2
(η− ∗ ω + ω ∗ η−)

)

respectively, and from variation of ω we find

dχ = −
1

2
{η−, e+}∗ +

1

2
{η+, e−}∗ .
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1+1d, BH

Let us also define

M ∗ = −Λχ+
1

2
(η+ ∗ η− + η− ∗ η+) .

In the commutative limit M ∗ approaches the black hole mass
M . Using the equations of motion we find

dM ∗ =
1

4

[

ω , [η+ , η−]∗
]

∗ +
1

4
[η+ , [ω , η−]∗

]

∗ .

K.S.Gupta, NCGR-I, June 2007 – p. 55



1+1d, BH

In the commutative theory the conformally scaled metric is given by

eG = hab
ea ⊗ eb

χ
≡ Dη+ ⊗Dη−
− 1

Λ
(M − η+η−)

.

We take the ansatz below as the natural generalization of the above to the NC case:

eG∗
µν =

1

8
(D∗

µη
+ ∗D∗

νη
− +D∗

νη
+ ∗D∗

µη
−) ∗

 
1

− 1
Λ

`
M∗ − 1

2
(η+ ∗ η− + η− ∗ η+)

´
!

+

1

8

 
1

− 1
Λ

`
M∗ − 1

2
(η+ ∗ η− + η− ∗ η+)

´
!
∗(D∗

µη
+∗D∗

νη
−+D∗

νη
+∗D∗

µη
−)+(+←→ −) .

We note that eGµν as given above is symmetric and transforms as a second rank covariant
tensor under “twisted” diffeomorphisms. Thus according to the definition given by Wess et al,
it qualifies as a metric. In what follows, we proceed by setting Λ = −1.
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1+1d, BH

We find the commutative solutions and show that they are
time independent in a suitable gauge.

The action under twisted diffeos, under which

[x0 , x1] = iθ
(twisted diffeos)

−→ [t , r] = iθ .

Using the same logic as before, we show that the
commutative solutions are also solutions of the NC theory.

Time dependent NC solutions can be obtained using
suitable NC gauge transformations.
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2+1 NC BH

In the examples so far, we considered the
noncommutative generalization of the commutative
gravity action by replacing the pointwise products with ∗

products in the action. This was done assuming
space-time noncommutativity.

Here we want to start with a commutative solution of
Einstein’s equations, and then find the Poisson brackets
of the space-time variables which are consistent with the
geometry of the solution.

The noncommutative gravity solutions is then obtained by
representation of the algebra as operators, or by
“quantization”.
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2+1 NC BTZ

We use our idea for the BTZ black hole, whose metric, in
terms of Schwarzschild-like coordinates (r, t, φ) is given by

ds2 =

(

M−
r2

ℓ2
−
J2

4r2

)

dt2+

(

−M+
r2

ℓ2
+
J2

4r2

)−1

dr2+r2

(

dφ−
J

2r2
dt

)2

,

0 ≤ r <∞ , −∞ < t <∞ , 0 ≤ φ < 2π ,

where M and J are the mass and spin, respectively, and
Λ = −1/ℓ2 is the cosmological constant.
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2+1 NC BTZ

For 0 < |J | < Mℓ, there are two horizons, the outer and inner
horizons, corresponding respectively to r = r+ and r = r−,
where

r2
± =

Mℓ2

2

{

1 ±

[

1 −

(

J

Mℓ

)2] 1
2
}

The two horizons coincide in the extremal case |J | = Mℓ > 0,
while the inner one disappears for J = 0, M > 0.

K.S.Gupta, NCGR-I, June 2007 – p. 60



2+1 NC BTZ

The metric is diagonal in the coordinates (χ+, χ−, r), where

χ± =
r±
ℓ
t− r∓φ ,

ds2 =
−(r2 − r2

+)dχ2
+ + (r2 − r2

−)dχ2
−

r2
+ − r2

−
+

ℓ2r2dr2

(r2 − r2
+)(r2 − r2

−)
,

which shows that
χ+ is the time-like coordinate in the region r ≥ r+ (I),
r is the time-like coordinate in the region r− ≤ r ≤ r+ (II)
χ− is the time-like coordinate in the region 0 ≤ r ≤ r−. (III)
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2+1 NC BTZ

The manifold of the BTZ black hole solution is the quotient
space of the universal covering space of AdS3 by some
elements of the group of isometries of AdS3. The connected
component of the latter is SO(2, 2).
Let AdS3 is spanned by coordinates (t1, t2, x1, x2) satisfying

−t21 − t22 + x2
1 + x2

2 = −ℓ2

Alternatively, one can introduce 2 × 2 real matrices

g =
1

ℓ





t1 + x1 t2 + x2

−t2 + x2 t1 − x1



 detg = 1 ,

belonging to the defining representation of SL(2, R).
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2+1 NC BTZ

The isometries correspond to the left and right actions on g,

g → hLghR , hL, hR ∈ SL(2, R)

Since (hL, hR) and (−hL,−hR) give the same action, the
connected component of the isometry group for AdS3 is

SL(2, R) × SL(2, R)/Z2 ≈ SO(2, 2)

.
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2+1 NC BTZ

The BTZ black-hole is obtained by discrete identification of points on the universal covering
space of AdS3. This ensures periodicity in φ, φ ∼ φ+ 2π. The condition is

g ∼ h̃Lgh̃R , h̃L, h̃R ∈ SO(2, 2)

where

h̃L =

0
@ eπ(r+−r

−
)/ℓ 0

0 e−π(r+−r
−

)/ℓ

1
A , h̃R =

0
@ eπ(r++r

−
)/ℓ 0

0 e−π(r++r
−

)/ℓ

1
A

Thus,

BTZ =
AdS3

< (h̃L, h̃R) >

where < (h̃L, h̃R) > denotes the group generated by (h̃L, h̃R).
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2+1 NC BTZ

For 0 < |J | < Mℓ, the universal covering space of AdS3 is covered by three types of
coordinate patches which are bounded by the two horizons at r = r+ and r = r−. For all
three coordinate patches, g can be decomposed according to

g =

0
@ e

1
2ℓ

(χ+−χ
−

) 0

0 e−
1
2ℓ

(χ+−χ
−

)

1
A g(0)(r)

0
@ e

1
2ℓ

(χ++χ
−

) 0

0 e−
1
2ℓ

(χ++χ
−

)

1
A ,

where g(0)(r) is an SO(2) matrix which only depends on r and the coordinate patch.

The identification breaks the SO(2, 2) group of isometries to a two-dimensional subgroup
GBT Z , consisting of only the diagonal matrices in {hL} and {hR}. GBT Z is the isometry
group of the BTZ black hole, and from is associated with translations in χ+ and χ−, or
equivalently t and φ, on r =constant surfaces.

We shall now discuss the deformation of this solution.
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2+1 NC BTZ

For generic spin, 0 < |J | < Mℓ (and M > 0), we shall search for Poisson brackets for the
matrix elements of g which are polynomial of lowest order. They should be consistent with
the quotienting, as well as the unimodularity condition and, of course, the Jacobi identity.
Writing the SL(2, R) matrix as

g =

0
@ α β

γ δ

1
A αδ − βγ = 1 ,

Under the quotienting, we get

α ∼ e 2πr+/ℓ α

β ∼ e−2πr
−

/ℓ β

γ ∼ e 2πr
−

/ℓ γ

δ ∼ e−2πr+/ℓ δ

All quadratic combinations of matrix elements scale differently, except for αδ and βγ, which
are invariant under the quotienting.
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2+1 NC BTZ

Lowest order polynomial expressions for the Poisson brackets of α, β, γ and δ which are
preserved under are quadratic and have the form

{α, β} = c1αβ {α, γ} = c2αγ {α, δ} = f1(αδ, βγ)

{β, δ} = c3βδ{γ, δ} = c4γδ{β, γ} = f2(αδ, βγ)

where c1−4 are constants and f1,2 are functions.
They are constrained by

c1 + c2 = c3 + c4

f1(αδ, βγ) = (c1 + c2)βγ

f2(αδ, βγ) = (c2 − c4)αδ ,

after demanding that detg is a Casimir of the algebra. There are three independent
constants c1−4.
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2+1 NC BTZ

Further restrictions on the constants come from the Jacobi
identity, which leads to the following two possibilities:

A. c2 = c4 and B. c2 = −c1

Both cases define two-parameter families of Poisson
brackets. Say we call c2 and c3 the two independent
parameters. The two cases are connected by an SO(2, 2)

transformation.
There are three types of coordinate patches in the generic
case of M > 0 and 0 < |J | < Mℓ, and their boundaries are
the two horizons. Denote them again by: I) r ≥ r+, II)
r− ≤ r ≤ r+ and III) 0 ≤ r ≤ r−.
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2+1 NC BTZ

The corresponding maps to SL(2, R) are given by, with
I) r ≥ r+,

g(0)(r) = g
(0)
I (r) =

1q
r2+ − r2−

0
@
q
r2 − r2

−

q
r2 − r2+q

r2 − r2+
q
r2 − r2

−

1
A ,

II) r− ≤ r ≤ r+,

g(0)(r) = g
(0)
II (r) =

1q
r2+ − r2−

0
@
q
r2 − r2

−
−
q
r2+ − r2q

r2+ − r2
q
r2 − r2

−

1
A ,

III) 0 ≤ r ≤ r−,

g(0)(r) = g
(0)
III(r) =

1q
r2+ − r2−

0
@
q
r2
−
− r2 −

q
r2+ − r2q

r2+ − r2 −
q
r2
−
− r2

1
A ,
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2+1 NC BTZ

We can write the Poisson brackets for the various cases in terms of the Schwarzschild-like
coordinates (r, t, φ). The results are the same in all three coordinate patches. For the
two-parameter families A and B we get
A.

{φ, t} =
ℓ3

2

c3 − c2
r2+ − r2−

{r, φ} = − ℓr+(c3 + c2)

2r

r2 − r2+
r2+ − r2−

{r, t} = − ℓ
2r−(c3 + c2)

2r

r2 − r2+
r2+ − r2−

B.

{φ, t} =
ℓ3

2

c3 − c2
r2+ − r2−

{r, φ} = − ℓr−(c2 + c3)

2r

r2 − r2
−

r2+ − r2−

{r, t} = − ℓ
2r+(c2 + c3)

2r

r2 − r2
−

r2+ − r2−
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2+1 NC BTZ

These Poisson brackets are invariant under the action of the isometry group GBT Z of the
BTZ black hole. A central element of the Poisson algebra can be constructed out of the
Schwarzschild coordinates for both cases. It is given by

ρ± = (r2 − r2±) exp


−2κχ±

ℓ

ff
, c2 6= c3 ,

where the upper and lower sign correspond to case A and B, respectively,

κ =
c3 + c2

c3 − c2
,

The ρ± =constant surfaces define symplectic leaves, which are topologically R
2 for generic

values of the parameters (more specifically, c2 6= ±c3). We can coordinatize them by χ+

and χ−. One then has a trivial Poisson algebra in the coordinates (χ+, χ−, ρ±):

{χ+, χ−} =
ℓ2

2
(c3 − c2) {ρ±, χ+} = {ρ±, χ−} = 0

The action of the GBT Z transforms one symplectic leaf to another, except for the case
c2 = −c3, on which we focus from now on.
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2+1 NC BTZ

κ = 0 and the radial coordinate is in the center of the
algebra.

r =constant define R × S1 symplectic leaves, and they
are invariant under the action of GBTZ .

The coordinates φ and t parametrizing any such surface
are canonically conjugate:

{φ, t} =
c3ℓ

3

r2
+ − r2

−
{φ±, r} = {t, r} = 0
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2+1 NC BTZ

In passing to the noncommutative theory, we need to define a
deformation of the commutative algebra generated by t, eiφ

and r. Call the corresponding operators t̂, eiφ̂ and r̂,
respectively. Their commutation relations are :

[eiφ̂, t̂] = θeiφ̂ [r̂, t̂] = [r̂, eiφ̂] = 0 ,

where from the constant θ is linearly related to ℓ3/(r2
+ − r2

−).
There are now two central elements in the algebra: i) r̂ and ii)
e−2πit̂/θ. From i), irreducible representations select the R × S1

symplectic leaves. The action of GBTZ preserves the
irreducible representation, and in this sense we can say that
the isometry of the classical solution survives.
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2+1 NC BTZ

With regard to the central element ii) e−2πit̂/θ, one can identify
it with eiχ1 in an irreducible representation. The spectrum of t̂
is then discrete

nθ −
χθ

2π
, n ∈ Z

In associating t̂ with the Schwarzschild coordinate t, we note
that the latter is the time for the exterior of the black hole, but
not for the interior.
If there is a Hamiltonian description for this analysis, then the
corresponding energy is conserved modulo 2π

θ
.
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Interacting topology

Classical mechanics is formulated using the commutative
algebra of functions C∞(T ∗Q) on phase space. Classical
topology is encoded in this algebra.

In the passage to quantum theory, this algebra is
deformed to an appropriate noncommutative algebra. If
classical topology can be identified with the commutative
algebra C∞(T ∗Q), then quantum topology can be
identified with its noncommutative deformation.

The classical topology on spacetime R
d+1 is coded in the

commutative algebra of smooth functions A0(R
d+1). The

associated quantum topology is the GM plane R
d+1
θ which

is the Moyal algebra Aθ(R
d+1), with the ∗ product.
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Interacting topology

Thus, a theory where different sorts of matter and gauge
fields are based on algebras Aθ with different θ is a theory
of interacting quantum topologies.

This has interesting consequences for area preserving
diffeomorphisms in 2 space dimensions, with applications
to the cyclotron motion of electrons in a plane relevant for
the quantum Hall effect.
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Interacting topology

In 2d, θab = θǫab

Under a transformation x −→ x′,

ǫab −→ ǫab
∂x′a
∂xc

∂x′b
∂xd

= det

(

∂x′

∂x

)

ǫcd

If the determinant of the transformation is 1, then the
Levi-Civita tensor is invariant under the transformation.
So it is invariant under area preserving diffeos. Similarly,
the rotations in the plane given by SO(2) also leaves the
epsilon tensor in 2d invariant.
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Interacting topology

Q: What is the coproduct ∆ on SO(2)?

Recall that if µθ is the multiplication map on Aθ(R
2), then

µθ(f ⊗ g) = µ0

(

F−1
θ f ⊗ g

)

= f ⋆ g

where

F−1
θ = e

i
2
∂µ⊗θµν∂ν

and

m0(f ⊗ g) = f · g

is the pointwise multiplication in A0(R
2).
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Interacting topology

In order for ∆ to be consistent with the multiplication map on
Aθ(R

2), it must satisfy

µθ (∆(R)(f ⊗ g)) = R(f ⋆ g) .

Let us now note that the SO(2) invariance of ε implies that
any coproduct ∆θ

′ satisfying

∆θ
′ (R) = Fθ

′ (R⊗R)F−1

θ
′ ,

fulfills the above condition.

Q: So how can we fix θ
′

?
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Interacting topology

A: For QHE, using the idea of interacting topologies

In quantum Hall effect, the guiding centre coordinates satisfy

[Xa, Xb] = iθǫab θ = −
4

eB

where e is the electron charge and B is the external
commutative magnetic field. In addition, the whole system is
couple to an external commutative electric field on the 2d
plane. The external electromagnetic fields are described by
the abelian commutative gauge group Gc(U(1)).
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Interacting topology

If ψ, χ denote matter fields, and eiΛ ∈ Gc(U(1)), then

(eiΛψ) ∗ (eiΛχ) 6= e2iΛ(ψ ∗ χ)

So we must twist the coproduct on Gc(U(1)) to

∆θ(e
iΛ) = F−1

θ (eiΛ ⊗ eiΛ)Fθ

such that

mθ(∆θ(e
iΛ)ψ ⊗ χ) = e2iΛ(ψ ∗ χ)

So the coproduct on Gc(U(1)) is fixed by its interaction with
the algebra of the matter fields.
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Interacting topology

We now go back to the original question of how SO(2)

rotations on Aθ(R
2). The group SO(2) acts on Gc(U(1)).

Therefore, the full group that acts on the algebra Aθ(R
2) is the

semi-direct product

SO(2) ⋉ Gc(U(1)) .

The coproduct on the rotations must preserve this group
structure. Consequently, if ∆θ is the coproduct for Gc(U(1)), it
is the same for SO(2):

∆θ(R) = Fθ(R⊗R)F−1
θ .

where R ∈ SO(2).
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Interacting topology

Thus we see that the cyclotron motion of electrons in
quantum Hall effect provides a concrete example of
interacting quantum topologies. In particular, the
coproduct on the algebra of matter fields fixes that for the
gauge fields and the diffeos.

The application to twisted Laughlin states is under
investigation.

This could have an application to the edge states of qhe
also.
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Fluctuating topology

The idea of topology change has been discussed in the
context of theories of space-time by several authors, e.g.
R. Sorkin and his collaborators.

Although topology change is not permitted by classical
Einstein’s equations, there is no reason to believe that
such restrictions must apply in any quantum theory of
gravity at the Planck scale.

In early 1990’s, Balachandran discussed the idea of
topology change in simple quantum models. He and his
collaborators applied this idea to CFT (1993) and
quantum physics (1995), which was adapted to NCG by
P. Teotonio-Sobrinho, S. Vaidya et al (2003, 2004).
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Fluctuating topology

We have discussed before the result of Gelfand and
Naimark whereby geometry has a dual description in
terms of a commutative algebra.

When the algebra becomes noncommutative, then a
result due to A. Connes states that the information for a
Riemannian manifold M , together with its metric and
certain other features can be encoded in the spectral
triple (A, H, D), where A is the C∗ algebra of smooth
functions on M , H is the Hilbert space of
square-integrable spinors on M and D is the Dirac
operator acting on H.
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Fluctuating topology

Let X denote a pair of disjoint one dimensional intervals, I1
and I2. They are parametrized by the coordinate x ∈ [0, L].
Let

ψ(x) =





ψ1(x)

ψ2(x)



 ∈ HX

, where ψ1 and ψ2 has support in I1 and I2 respectively.
The Hilbert space has a scalar product

(ψ, χ) =

∫ L

0

dx(ψ∗1χ1 + ψ∗2χ2)(x)
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Fluctuating topology

The Dirac operator has the form

D =





−i∂x 0

0 −i∂x





However, D is an unbounded differential operator acting on
the infinite dimensional Hilbert space HX . We have to
therefore specify the boundary conditions in order to describe
it completely. This follows from the von Neumann’s theory of
self-adjoint extensions. We shall see that the choice of
topology is coded in the boundary conditions, i.e. the Dirac
operator.
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Fluctuating topology

For the momentum operator in a single line interval, the
allowed boundary condition which makes it self-adjoint are
given by

ψ(x = L) = eiαψ(x = 0), α ∈ R mod 2π

So this operator admits a 1-parameter family of self-adjoint
extensions, parametrized by the U(1) worth of boundary
conditions given by eiα.
Similarly for the Dirac operator D, defined on a pair of line
intervals, the corresponding self-adjoint extensions are
parametrized by an U(2) matrix.
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Fluctuating topology

The corresponding boundary condition on our ψ(x) is

0
@ ψ1(L)

ψ2(L)

1
A = g

0
@ ψ1(0)

ψ2(0)

1
A

where g ∈ U(2). We can choose for example,

g1 =

0
@ eiα 0

0 eiβ

1
A or g2 =

0
@ 0 eiα

eiβ 0

1
A

For the first choice, we have

(ψ∗
1χ1)(L) = (ψ∗

1χ1)(0) (ψ∗
2χ2)(L) = (ψ∗

2χ2)(0)

which indicates the topology of two disjoint circles. For the second choice, we have,

(ψ∗
1χ1)(L) = (ψ∗

2χ2)(0) (ψ∗
2χ2)(L) = (ψ∗

1χ1)(0)

indicating the topology of a single circle obtained from the two line intervals.
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Fluctuating topology

This simple example illustrates the possibility of having
different topologies arising from the choice on boundary
conditions for the Dirac operator.

The connection to geometry comes through its dual
description following Connes idea of the spectral triple.

Although this example uses commutative algebra, similar
ideas may be possible for noncommutative algebras as
well.
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Concluding remarks

We have seen that noncommutative geometry finds a
natural setting in formulating a quantum theory of gravity.

Following the ground breaking work of Wess at al, a lot of
new directions have opened up in this field. However, not
many exact solutions have been found yet.

An interesting idea to follow could be that of
noncommutative holography. This has already been
discussed by Manin et al. (2002) who discussed
bulk/boundary correspondence when the boundary is a
noncommutative space. If both NCG and holography are
relevant features of Planck scale physics, then they must
at least be compatible.
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Concluding remarks

Applications of NC Gravity to cosmology could be another
interesting area.

Lot of exciting work remains to be done.
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