

50 rokov od založenia Katedry jadrovej fyziky na UK

Struktúra ťažkých jadier

S. Antalic, Š. Šáro, Z. Kalaninová

Fakulta matematiky, fyziky a informatiky

Oblasť spekroskopie transfermií

Experimentálna báza

(Separator for Heavy SHIP reaction **Products**) Ion rýchlostný filter umiestnený v

Mechanizmus reakcií

α-y spektroskopia transfermií

Po alfa premene môže dcérske jadro zostať vo vzbudenom stave. Pri jeho deexcitácii sú emitované gama kvantá. Detekcia α -y koincidencií umožňuje lokalizáciu detailné ۵ štúdium excitovaných hladín.

 α a γ spektroskopiou môžeme získať informácie o Q-hodnotách rozpadov, hmotnostiach jadier, výškach štiepnych bariér, spinoch a paritách hladín...

B oneskorené štiepenie

B oneskorené štiepenie je proces, pri jadro beta premene ktorom ро obsadzuje vysoko vzbudenú hladinu dcérskeho jadra. Energia hladiny je vyššia alebo porovnateľná s výškou štiepnej bariéry jadra, a to sa následne štiepi.

Pravdepodobnosti oneskoreného štiepenia

očakávať v oblasti veľmi ťažkých jadier, pretože majú nízke štiepne bariéry (B_f) a v oblasti ďaleko od

Nový typ štiepenia pozorovaný u ¹⁸⁰Hg (dcérsky produkt β premeny ¹⁸⁰TI): nerozpadá sa na dve semimagické jadrá ⁹⁰Zr, ale distribúcia štiepnych fragmentov je asymetrická. Ide o prvý prípad, keď asymetrické štiepenie nie je ovplyvnené vrstvovými efektmi.

Distribúcia štiepnych fragmentov rozpadu ¹⁸⁰Hg

K-izoméry

Tvarový izomér: izomérny a základný stav majú rozdielnu deformáciu. Spinový izomér: izomérny a základný stav majú veľký rozdiel spinov. K-izomér: izomérny a základný stav majú rozdielny priemet spinu na os symetrie jadra.

Stav s vysokým K tvoria nespárované nukleóny s priemetmi spinu do osi symetrie Ω_i .

 γ spektrum deexcitácie K-izoméru v ²⁵³No

Jadrové izoméry sú metastabilné stavy atómového jadra vo vzbudenom stave.

Význam K-izomérov:

• identifikácia stavov vysokou S excitačnou energiou

 izomérne stavy môžu viesť k zvýšenej stability supert'ažkých prvkov kolektívne študovať možnosť

hladiny, excitácie, jednočasticové

