F. Šimkovic, P. Povinec, I. Sýkora, J. Staníček Muenster - Bratislava and TGV (Dubna, CTU Prague, Orsay, Bratislava) collaborations

The process of the neutrinoless double-electron capture (OvECEC) has been revisited for those cases where the two participating atoms are nearly degenerate in mass. New OvECEC transitions with parity violation to ground and excited states of final atom/nucleus were found. Selection rules for the $0 v \varepsilon \varepsilon$ transitions were established. The explicit form of corresponding nuclear matrix elements was derived.
M.I. Krivoruchenko, F. Šimkovic, D. Frekers, and A. Faessler, Nucl. Phys. A 859, 140-171 (2011).

OvECEC decay width:
$\Gamma^{0 \nu E C E C}\left(J^{\pi}\right)=\frac{\left|V_{\alpha \beta}\left(J^{\pi}\right)\right|^{2}}{\left(M_{i}-M_{f}\right)^{2}+\Gamma_{\alpha \beta}^{2} / 4} \Gamma_{\alpha \beta}$

Calculations:

1. Mass difference \rightarrow Coulomb energy of electron holes.
2. Decay width $\Gamma_{\alpha \beta} \rightarrow$ widths of the excited electron shells, Auger \& radiative transitions.
3. $\mathrm{V} \rightarrow \mathrm{L}_{\mathrm{T}}$ violating potential,
electron wave functions \& nuclear matrix elements.

Atomic mass measurement at Penning trap (MPI-K): $\mathrm{T}_{1 / 2}{ }^{0 \mathrm{vECEC}}\left({ }^{152} \mathrm{Gd}\right)=4 \times 10^{26}\left(1 \mathrm{eV} / \mathrm{m}_{\beta \beta}\right)^{2}$ years Eliseev et al. (Šimkovic, Krivoruchenko), Phys. Rev. Lett. 106 (2011) 052504.

$2 E C$-transition	Q (old), keV	Δ (old), keV	Q (new), keV	Δ (new), keV
${ }^{152} \mathrm{Gd} \rightarrow{ }^{152} \mathrm{Sm}$	$54.6(3.5)$	$-0.2(3.5)$	55.7(0.2) SHIPTRAP, PRL	069 0.90.2 052504 (2011)
$164 \mathrm{Er} \rightarrow{ }^{164} \mathrm{Dy}$	$23.3(3.9)$	$5.2(3.9)$	25.07(0.12) SHIPTRAP, paper submitted	
180.12$)$				
$\mathrm{W} \rightarrow{ }^{180} \mathrm{Hf}$	$144.4(4.5)$	$13.7(4.5)$	143.1(0.2) SHIPTRAP, paper submitted	

${ }^{152}$ Gd is currently the most promising candidate for the search for resonant neutrinoless double-electron capture

Bratislava-Muenster experiment: $\mathrm{T}_{1 / 2}{ }^{0 \mathrm{VEECEC}}\left({ }^{74} \mathrm{Se}\right)>4.31 \mathbf{1 0}^{19}$ years
Frekers, Puppe, Thies, Povinec, Šimkovic, Staníček, Sýkora, Nucl. Phys. A 860 (2011) 1.

TGV (Dubna, Orsay, Prague, Bratislava) experiment: $\mathrm{T}_{1 / 2}{ }^{0 \mathrm{vECEC}}\left({ }^{106} \mathrm{Cd}\right)>3.6 \mathbf{1 0}^{\mathbf{2 0}}$ years Rukhadze et al. (Šimkovic), Nucl. Phys. A 852 (2011) 197.

32 HPGe planar detectors $\varnothing 60 \mathrm{~mm} \times 6 \mathrm{~mm}$
(active area $2040 \mathrm{~mm}^{2}$)
Total mass of samples: $10-15 \mathrm{~g}$ (maximum)
E-threshold: $\approx 10 \mathrm{keV}$
Samples: $12 \times{ }^{106} \mathrm{Cd}$ foils ($\sim 10 \mathrm{~g}$ in Phase 1)

